Pattern Modelling in Time-series Forecasting
نویسنده
چکیده
Pattern modelling in time-series prediction refers to the process of identifying past relationships and trends in historical data for predicting future values. This paper describes the development of a new pattern matching technique for univariate time-series forecasting. The pattern modelling technique out-performs frequently used statistical methods such as Exponential Smoothing on different error measures and predicting the direction of change in time-series. The paper discusses the prediction results on popular benchmarks and the real US S&P index for financial markets.
منابع مشابه
Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملNoise impact on time-series forecasting using an intelligent pattern matching technique
Intelligent time-series forecasting is important in several applied domains. Artificially intelligent methods for forecasting are being consistently sought. The effect of noise on time-series prediction is important to quantify for accurate forecasting with these systems. Conventionally, noise is considered obstructive to accurate forecasting. In this paper we analyse the noise impact on time-s...
متن کاملDynamic time-series forecasting using local approximation
Pattern recognition techniques for time-series forecasting are beginning to be realised as an important tool for predicting chaotic behaviour of dynamic systems. In this paper we develop the concept of a Pattern Modelling and Recognition System which is used for predicting future behaviour of time-series using local approximation. In this paper we compare this forecasting tool with neural netwo...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملA novel grey–fuzzy–Markov and pattern recognition model for industrial accident forecasting
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cybernetics and Systems
دوره 31 شماره
صفحات -
تاریخ انتشار 2000